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The leading correction-to-scaling amplitudes for the spin-t/2, nearest-neighbor 
sc, bcc, and fcc Ising models are considered with the particular aim of determin- 
ing their signs. On the basis of previous two-variable series analyses by Chen, 
Fisher, and Nickel and renormalization group E = 4 - d  expansions, it is con- 
cluded that the correction amplitudes for the susceptibility, correlation length, 
specific heat, and spontaneous magnetization are negative for all three lattices. 
Thus, for example, the effective exponent ,?,~(T) asymptotically approaches the 
true susceptibility exponent 7 from above. Other earlier and more recent high- 
temperature series and field-theoretic analyses are seen to be consistent with 
this result. However, the usual nonasymptotic, perturbative field-theoretic 
approaches are essentially committed to positive correction amplitudes. The 
question of the signs therefore relates directly to the applicability of these non- 
asymptotic field-theoretic calculations to three-dimensional Ising models as well 
as to different experimental systems. 

KEY WORDS: Ising models; corrections to scaling; critical behavior; field 
theoretic calculations; epsilon expansions; series analysis. 

1. I N T R O D U C T I O N  

Nearly two decades ago, Wegner (1~ pointed out that renormalization group 
theory implies that there are singular corrections to the leading power-law 
behavior of thermodynamic quantities near a critical point. For example, 
the susceptibility of a ferromagnet, in the absence of a bulk field, should be 
well described in the vicinity of its critical point by 

z ~ C  ltl-~(l +ao ]tl~ +a~t +a2o ltl2~ +a2t~ + ...) (1) 
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where the reduced temperature t = ( T -  T~,)/Tc measures the distance from 
the critical temperature. The leading exponent 7 and the leading correction 
exponent 0 are expected to be universal. Although the value of 0 has been 
reliably calculated to be close to 0.5 by several different methods, (2 lo~,3 the 
nonuniversal correction amplitudes ao remain somewhat elusive, even for 
relatively simple models such as the three-dimensional, nearest-neighbor, 
spin-�89 (si= +_1) Ising models. In this note, we address, in particular, the 
question of the signs of these amplitudes for various thermodynamic func- 
tions, including the susceptibility, correlation length, specific heat, and 
spontaneous magnetization, in the spin-�89 nearest-neighbor simple cubic 
(sc), body-centered cubic (bcc), and face-centered cubic (fcc) Ising models. 
(The nearest-neighbor and spin-�89 restrictions will not be mentioned 
explicitly each time, but will be understood unless the context is clearly 
more general.) It transpires, as indicated below, that the signs of the 
leading corrections have implications for the applicability of certain field- 
theoretic techniques for describing the "preasymptotic" approach of the 
susceptibility, etc., to their limiting singular forms. 

There have been several attempts to determine the correction-to- 
scaling amplitudes for Ising models, using series extrapolation. In 1975, 
Saul et al. (2) extrapolated high-temperature series for the susceptibility of 
the spin-S nearest-neighbor fcc Ising models. In addition, Camp and 
Van Dyke (3) extended and analyzed susceptibility series for the spin-S sc, 
bcc, and fcc models. Both groups found that the series were consistent with 
the value 7 = 1.250 for all S, provided that a correction-to-scaling term of 
the form ao t~ with 0 ~-0.5 was included. Moreover, they concluded that the 
amplitude a + for the leading correction term in the high-temperature 

Z 

susceptibility probably vanished for the spin-�89 Ising model. In 1976, Camp 
et al. ~4~ concluded that correction-to-scaling terms were also undetectable 
in series for the correlation length and specific heat of the spin-�89 Ising 
model. Since 1976, however, estimates of the exponent ~ have dropped 
significantly/6,7,10 18) The revised estimates result from sophisticated series 
analyses of the long series of Nickel (11) for a family of bcc lattice models 
in the same universality class as the Ising model, 17'1~ 13/ as well as from 
renormalization group calculations. (6'14 18) In light of the revised values of 
7 and other exponents, it seems likely that the spin-�89 estimates suggesting 
ao ~-0 also need significant revision. 4 

3 Including, in the case of Chen, Fisher and Nickel, ~1~ partial differential approximants: see 
Fisher and Chen. (121 

4 A comprehensive review of the literature on this subject is beyond the scope of this note. 
Thus, we do not mention many further studies in the period following 1976; we have focused 
instead on more recent work based on the revised exponent estimates. 
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In 1980, Zinn-Justin (7) used a modified ratio method to extrapolate 
Nickel's high-temperature susceptibility and correlation length series for 
the general spin-S bcc Ising modelJ 1~1 He calculated universal ratios of the 
correction amplitudes, presumably gaining information on the individual 
amplitudes, but he does not mention their signs. More recently, George 
and Rehr (19~ have analyzed high-temperature susceptibility, correlation 
length, and four-spin correlation series for the spin-S sc, bcc, and fcc Ising 
models. They find, via second-order differential approximants, that the 
correction-to-scaling amplitudes of the spin-�89 Ising models are negative for 
the susceptibility and correlation length on all three lattices. Their results 
appear open to question, however, because they do not, in general, observe 
a consistent trend in ao with coordination number. For example, they 
report that the correlation length correction amplitudes are a f  = -0.1775, 
-0.084, and -0.094 for the sc, bcc, and fcc lattices, respectively, on the 
assumption 7 = 1.240.5 Although we know of no proof that there should be 
a monotonic trend with coordination number, we argue below that lack of 
such a trend is hard to accept. In most studies such uniform tendencies are 
the rule. Indeed, in a recent analysis (2~ we found uniform, systematic 
trends with coordination number in the leading amplitudes for the suscep- 
tibility Z, correlation length {, specific heat C, and spontaneous magnetization 
Mo of the sc, bcc, and fcc Ising lattices. 

Since the results of George and Rehr are currently uncorroborated, it 
seems worthwhile to examine further the issue of correction-to-scaling 
amplitudes. The question of their signs is especially intriguing, as 
mentioned, because it relates directly to the applicability of the usual non- 
asymptotic field-theoretic calculations (21-23~ to three-dimensional Ising 
models, and to experimental systems which they might approximate. This 
issue will be discussed in more detail below. 

We argue here that the correction-to-scaling amplitudes ao for the 
susceptibility, correlation length, specific heat, and spontaneous magnetiza- 
tion are negative for the three-dimensional sc, bcc, and fcc spin-�89 Ising 
models. We further show that earlier series extrapolation work (2 4) and 
recent series analyses (I9,2~ are consistent with this view and we explore 
briefly some of the implications of these results. Previous field-theoretic 
calculations,(2~ 23~ on the other hand, are, as will be discussed below, 
effectively committed to positive values for ao. 

5 We understand from Dr. George that some of these results may be subject to reconsidera- 
tion. We are indebted to him and Professor J. J. Rehr for correspondance. 
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2. S I G N S  OF C O R R E C T I O N  A M P L I T U D E S  FOR T H E  
BCC ISING M O D E L  

We begin by establishing that the correction amplitudes are negative 
for the bcc Ising model. The approach we follow is to imbed the pure bcc 
Ising model in a family of models which interpolate smoothly between the 
Gaussian model and the standard, spin -1 Ising model. Nickel (m has 
developed long, two-variable series expansions for two such families of 
models-- the double Gaussian (DG) (1~ and Klauder (K1) (24) models. The 
two variables used in the expansion are the high-temperature variable 
x = J/kB T, where J is the exchange parameter, and the parameter y, which 
interpolates analytically from a pure Gaussian at y = 0 to a pure Ising 
model at y = 1. Both models have spin-weighting functions W(s, y )  for a 
continuous, scalar spin s located on each lattice site, which have the forms 

DG: W(s, y)  oc b[e  b2/s-'/~)2+e-b2('+',~Y~2] (2) 

KI: W(s, y)  oc b [skY/tl-Yl e -b2('2-tl (3) 

where 

b2(y)=  1/2(1 - y) (4) 

Nickel's three-dimensional bcc series to order X 22 have been analyzed using 
special two-variable series extrapolation techniques by Chen, Fisher, and 
Nickel, ~176 Fisher and Chen, (12) George and Rehr, ~ and Nickel and 
Rehr. (~3) (In addition, Nickel calculated series for the two-dimensional 
square lattice; these were analyzed by Barma and Fisher, (25) who found 
vanishing amplitudes for the singular correction-to-scaling in the pure Ising 
limit y = 1, in accord with analytic information. 6 

Four  of the results for the bcc lattice are pertinent here: ( i )Chen  
et al. (m) showed that for nonvanishing y, both models belong to only one 
Ising-like universality class. (ii) Fisher and Chen (12) demonstrated that the 
leading correction amplitudes vanish linearly as y -  Yc near an Ising-like 
multicritical point [Yc, x,,-~ J /k  B Tc(yc)], as illustrated in Fig. 1. (iii) Chen 
et al. (1~ established that this multicritical point (C) lies between y = 0 (G) 
and y =  1 (I): see Fig. 1. Specifically, they found yD~c =0.87_+0.04 and 
yK~= 0.81 __ 0.06 for the bcc models. (m'~2) (iv) Chen et al. ~176 found one and 
only one multicritical point in the range 0 < y < 1.8 and the effective renor- 

6 Thus, for the two-dimensional case, Barma and Fisher ~2sl showed that the multicritical point 
Yc lies at y = 1, which is consistent with the absence of nonanalytic corrections to scaling in 
the two-dimensional Ising model. See also Aharony and FisherJ 26) 
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Fig. 1. Phase diagram in the (x = J/k B T, y) plane for the double-Gaussian model showing 
the critical locus x<.(y) and the multicritical point C, which lies between the pure Gaussian 
point G and the pure Ising point L The broken curves depict some partial differential flow 
trajectories which can be regarded as effective renormalization group flows. (After Chen 
et a/.(t~ 

malization group flows (see Fig. 1) established that this controlled the 
Ising-like behavior  along the whole transit ion line for this range of y. 

F r o m  these four results, we can infer a salient fact: since the three- 
dimensional,  bcc Ising model  and the Gaussian model  lie on opposite sides 
of the multicritical point  C, the correction amplitudes ao of the bcc Ising 
model  must  be oppos i t e  in sign to those near the Gaussian fixed point. In 
order to determine the signs of the latter corrections, we can follow several 
routes. The simplest relies on e-expansions by Chang  and Houghton .  I27) 
(The second-order  terms of their expressions for several universal correc- 
tion ampli tude rat ios  differ from those of  Nicoll and Albright, (28) but their 
zeroth- and first-order terms are the same./2~)) To first order  in c, they find 
that  the correction amplitues a +, a { ,  and a~  for the susceptibility, correla- 
tion length, and specific heat above and below T c, respectively, and a ~  for 
the spontaneous  magnetization,  can be expressed as positive quantities 
multiplied by - ( u - u * ) / u * ,  where u is the coefficient of the ~b 4 term in the 
field-theoretic Hamil tonian  and u * >  0 is its fixed point  value. For  u near 
the Gaussian fixed point, 0 < u < u*, their results therefore imply that  the 
amplitudes a f ,  a [ ,  + a s  and a2t are all positive. 

Bagnuls and Bervillier's work using field theory in d =  3 dimensions (2~) 
also supports  this conclusion. They numerically calculate dimensionless 

822 /58 /3 -4 -3  
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functions corresponding to x(T), ~(T), C(T), and Mo(T ) and reduced 
temperature t for a set of values {up} of the ~b 4 coupling in the range 
0 <  Up< u*. They find only positive correction amplitudes in this range 
(u < u*), confirming the results of Chang and Houghton. (27) 

Since the correction amplitudes for the spin-�89 bcc Ising model are 
opposite in sign, we conclude that a~,  a S, a~,  and a ~  are negative for this 
Ising model. A corollary, based on the proportionality between the correc- 
tion amplitudes and - ( u - u * ) / u * ,  is that the value of u corresponding to 
the bcc Ising model, say u bcc, is greater than u*; we will exploit this 
inequality later. Our overall conclusion is consistent with earlier results. In 
1979, Nickel and Sharpe (29) observed that numerical evidence suggested 
u > u* for the spin-�89 Ising models. In addition, George and Rehr (19) found 
that a + and a + are negative for the bcc lattice. Our series extrapola- 
tion results (2~ a~lso support this conclusion for a M. By fitting whole-range 
approximants for the spontaneous magnetization to the form 

Mo(T) ~- B Itl ~ (1 + a M It[ 1/2) (5) 

we found that aSu-~ -0.256, -0.240, -0.234 < 0  for the sc, bcc, and fcc 
lattices (recall that 0 is approximately 0.5). v We stress that although these 
values of a M will provide good asymptotic representations of Mo(T) for 
t >  10 -5, they must not be regarded as definitive. It is, in fact, our belief 
that truly reliable quantitative estimates for the magnitudes (as opposed to 
the signs) of the correction-to-scaling amplitudes will only be obtained by 
analyzing continuous families of models with a line of critical points in the 
given universality class, like the DG and Klauder models, with the aid of 
two-variable techniques, such as partial differential approximants. (1~ The 
theory of partial differential approximants is currently being extended so 
that effective calculations of the correction amplitudes can be performed.(3~ 

3. S IGNS OF CORRECTION A M P L I T U D E S  FOR SC 
A N D  FCC ISING M O D E L S  

Consider now the sc and fcc Ising models. In order to establish the 
signs of the correction amplitudes, we need to know whether the multicriti- 

7 We list here some of the more recent estimates of 0. Zinn-Justin ~7) found, by a ratio analysis 
of the high-temperature bcc series of Nickel,(l~) that 0 = 0.52 _+ 0.07. Chen et alJl~ examined 
the same series using partial differential approximants,  and concluded that 0 = 0.54 + 0.05. 
George and Rehr (9) also extrapolated these series, but  using a different partial differential 
approximant  analysis, and found that the susceptibility series yielded 0 = 0.52 _+ 0.03 and the 
squared correlation length series yielded 0 = 0 . 4 9 + 0 . 0 4 .  On  the field-theoretical front, 
Le Guillou and Zinn-Justin concluded 0 = 0.498_+ 0.020 on the basis of loop expansions 
in d ~  3 (5,6) and 0 = 0.504 _+ 0.026 on the basis of ~-expansions. (a7'18) 
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cal point Yc lies between y = 0  and y =  1 for the double Gaussian or 
Klauder models on the sc and fcc lattices, as it does for the bcc lattice. If 
so, the above arguments for the bcc Ising model apply, and the signs are 
negative for the sc and fcc Ising models as well. To date, no one has 
calculated two-variable series for these lattices. Here, we argue, on 
phenomenological grounds, that y~C< 1, or equivalently,, that u * <  u s~ In 

sc fcc fact, we suggest that u * <  ufcc< ubc~ U s~ (and 0 < Yc < Y~b~176 < Yc ~- 1). 
We may use the analysis of Seglar and Fisher, (3n who examined 

various crossovers, including that from Ising-like critical behavior to 
van der Waals behavior, which occurs when the range of interactions R 0 
increases. If a denotes the lattice spacing, the infinite-range, infinitely-weak 
limit, or the Kac-van der Waals limit, corresponds to Ro/a---, 0% or 
p - ( a / R o ) d ~ O ,  where d is the spatial dimensionality. Seglar and Fisher 
demonstrated that this limit is equivalent to the Gaussian limit by starting 
with an initial spin Hamiltonian 

H =  - � 8 8  2 J~ I s , - s / 2 - � 8 9 1 8 8  Us4 (6) 
j r  

with interactions of the Kac form, 

J~ = Jo(a/Ro) d qo(Ro./Ro) (7) 

By suitable spin and spatial rescalings, one can rewrite (6) as the standard 
~b 4 Hamiltonian 

~ / k B  T =  -- f ddR [1 (V~)2 _~_ 1 r~2 + 41_ b/@4] (8) 

with a rescaled coupling constant given by (3n 

u = (UkB T / J ~ ) a -  ~(a/Ro) ~ (9) 

(where, as usual, e = 4 - d ) .  Thus, when p =-(a/Ro) d approaches zero, the 
coupling u also vanishes, confirming that the Gaussian fixed point controls 
the infinite-range critical behavior. Consider now the relation between the 
coordination number q of a lattice and the range of interactions Ro. The 
mean field limit can be attained by letting either q or Ro approach infinity 
while qJ or, as follows from (7), J(Ro/a) a, remains finite. (32) Thus, as one 
would expect, q ~ (Ro/a) a and so the coupling constant u also obeys the 
asymptotic relation 

u..~q 1 (10) 

which implies u~C> ub~ Uf~176 8 But we have argued above that Ub~~ U*; 

8 Note that the coordination number  q for increasing range is not identical to the nearest- 
neighbor coordination number,  q. . .  Thus, the argument  must  be regarded as somewhat 
heuristic, unless one actually increases the spatial range per se, following the approach of 
Domb  and Dalton. (33) 
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hence we conclude uSC>u *, so that the correction amplitudes are also 
negative for the susceptibility, correlation length, specific heat, and spon- 
taneous magnetization of the sc Ising model. Indeed, on the basis of Chang 
and Houghton's results, (27) we would expect the amplitudes for the sc Ising 
model to be larger in magnitude than those for the bcc Ising model, since 
ao is proportional to (u - u * ) / u *  and (u s~ - u * ) / u *  > ( u  bcc - ~/*)/~/*,  George 
and Rehr (19) did, in fact, find that a + is largest in magnitude for the sc 
lattice (although, as mentioned, they do not find a consistent trend with 
coordination number). For  the susceptibility, however, they report that 
]a + ] is actually s m a l l e s t  for the sc lattice. In our series analyses, (2~ we 
observed that a;4 was most negative for the sc and least negative for the fcc 
lattice [see estimates immediately following (5) above],  which agrees with 
expectation. 

The argument given does not establish that the correction amplitudes 
are also negative for the fcc Ising model. Previous numerical results, 
however, suggest reasonably strongly that the signs should be the same for 
the fcc Ising model as for the bcc Ising model. First, as mentioned, George 
and Rehr (19~ found negative correction amplitudes for )~ and ~ on all three 
lattices for T >  To. Second, we (2~ obtained negative correction amplitudes 
for Mo for all three lattices. 9 Finally, w e  (2~ also found that leading 
amplitudes, for example, differed very little in numerical terms between the 
bcc and fcc lattices. For  example, the low-temperature susceptibility 
amplitudes C were estimated to be 0.220_+0.004, 0.2075_+0.002, and 
0.205 _+ 0.006 for the sc, bcc, and fcc lattices, respectively. Similarly, for the 
high-temperature correlation length amplitudes f ~ ,  we found 0.495 _+ 0.003, 
0.4574 _ 0.0001, and 0.4462 + 0.0005, respectively. In view of this similarity 
between the bcc and fcc lattices, it would be surprising if the correction 
amplitudes on the two lattices were to differ in sign. Thus, we believe that 
the correction amplitudes are negative for the susceptibility, correlation 
length, specific heat, and spontaneous magnetization on all three lattices. 

This conclusion is in fact consistent with earlier analyses. As men- 
tioned, Saul et  al., (2~ Camp and Van Dyke, (3/and Camp e t  al. (4) concluded 
that the high-temperature correction amplitudes vanished for all three 
lattices, within uncertainties, if one has 7 = 1.25. But it is now believed 
that 7 ~- 1.239. If we regard the higher estimate as the value of an e f f e c t i v e  

(34) then we find e x p o n e n t  Vefr, 

7elf- = - d l o g z / d t = 7 - O a 0  It[ ~ + . . .  (11) 

9 In ref. 20, the spontaneous magnetization was the only function studied which showed clear, 
unbiased evidence of a confluent correction of the form aoltl ~ with 0-~ 0.5. Thus, Liu and 
Fisher did not estimate the correction amplitudes or attempt to determine their signs for the 
susceptibility, correlation length or specific heat. 



Corrections to Scaling in 3D Ising Models 439 

where 7 ~ 1.239 and 7ef~ -~ 1.25 for t--~ 10 3. Since 7~n-> 7, this implies that 
ao is negative (provided higher-order corrections are unimportant  for the 
accessible range of t). Similar arguments apply for 3, C, and Mo. 

The result 7eft> 7 may seem surprising, since the mean field and 
Gaussian value of 7 is unity, which is lower than the Ising value. Indeed, 
the usual perturbative field-theoretic treatments start from the Gaussian 
fixed point or free-field limit and naturally lead only to an approach of the 
asymptotic exponent from the same side as the mean field value. (35~ Values 
of u > u* are not accessible to the standard perturbative analysis. However, 
in the context of a specific model or real physical system, there is no 
general reason why ~eff should vary monotonically from the mean field to 
the Ising values. This can be seen clearly by considering a Heisenberg 
model with Ising anisotropy as studied by Seglar and Fisher within the 
e-expansion. (31) The asymptotic behavior must be Ising-like with, for d =  3, 
7--1.24. Far  from criticality, however, one sees a Heisenberg value of 
7 ( -1 .40  for d =  3), which ultimately crosses over to the lower Ising value 
of ~ from below. Seglar and Fisher also observed nonmonotonici ty with 
effective exponents during various other crossovers. Thus, real systems 
could well show nonmonotonic  variation in their effective exponents. This 
point was argued further by Fisher in relation to observations on micellar 
solutions.l~ 

4. C O N C L U S I O N S  

We consider now the implications of our results for nonasymptotic 
field-theoretic analyses, such as those of Bagnuls and Bervillier (21) and 
Dohm. (22'23~ Both of these calculations rely on expansions in the coupling 
constant u performed by Nickel et al. (4~ directly in d =  3 dimensions, and 
take into account correction terms of the form anolt] n~ As mentioned 
above, Bagnuls and Bervillier have numerically calculated dimensionless 
functions corresponding to the susceptibility and other functions, for values 
of u ranging from zero to u*. According to Bagnuls and Bervillier, their 
functions should describe, via three adjustable parameters, experimentally 
measured (or theoretically calculated) functions in the "preasymptotic 
regime," where terms of order t or higher are negligible compared to the t o 

lo Fisher(36) suggested that long-range crossover might explain "nonuniversal" values of the 
exponent 7 observed in mieellar solutions by Degiorgio and co-workers. ~3v/In particular, he 
argued that the effective exponent might vary nonmonotonically from the expected Ising to 
mean-field behavior, possibly assuming values even lower than unity. Bagnuls and 
Bervillier 1381 later showed that the variation of the effective exponent is actually monotonic 
within field theory in d= 3. More recently, Dietler and Cannel11391 have repeated the experi- 
ment and found no evidence of nonuniversal, or indeed, non-Ising, exponents. 
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term. The three adjustable parameters contain all the nonuniversal features 
except the actual sign of u - u*, which is effectively assumed to be negative. 
Since their functions would seem to apply only to systems with u < u*, they 
are not appropriate for describing the three-dimensional Ising models, or 
other systems with u > u*, even in the preasymptotic regime. (However, 
their functions have been fitted successfully to the susceptibility, correlation 
length, and specific heat of xenonj41~). 

The nonasymptot ic  analysis of Dohm (22'23~ also applies only to 
systems with u < u*. However, his strategy differs from that of Bagnuls and 
Bervillier, in that the nonuniversal features are determined by fitting to one 

accurately known physical quantity, such as the susceptibility. The other 
desired quantities, for example, the specific heat, can then be obtained. 
Dohm has applied the strategy successfully to the superfluid transition in 
helium. (42) There appears to be a larger risk of error in this strategy, 
because it relies on having one well-known quantity which lies in the 
preasymptotic region. If, for a given system, the chosen quantity does not 
fully lie in this regime, then errors can be introduced in the fitting of non- 
universal features, and can be propagated through the calculation to affect 
the estimates of other physical functions. 11 An application of Dohm's  
method to Ising systems has been contemplated.(44) The approach would fit 
to the whole-range approximants  for the correlation length which we 
presented (2~ for the three-dimensional spin -1 Ising model. However, the 
approximants  for the correlation length of the sc ]sing model (which, as 
argued above, has the most negative correction terms) indicate that the 
effective exponent v,ff approaches v from above.  (44~ This is consistent with 
the negative value of the correction amplitude, and consequently with the 
inequality use> u*, as argued above. 12 Since the field-theoretic description 
used by Dohm, and by Bagnuls and Bervillier, implies positive correction 
amplitudes, it appears that its application to Ising models requires exten- 
sions of the field-theoretic analysis. (The need for such an extension has 
also been discussed by Bagnuls and Bervillier./35~'13) 

11 This difficulty can be avoid to some extent by determining the nonuniversal parameters by 
a simultaneous fit to two or three quantities. See, for example, ref. 43. 

~2 The series analysis of the bcc and fcc correlation lengths in ref. 20, on the other hand, 
indicate that Veff(T ) approaches v from below for t > 3 x 10 -5. This could be interpreted as 
indicating a positive correction amplitude. However, we believe that the analytic corrections, 
a~ t, etc. [see (1)] are responsible for the effect. The correction amplitudes, a~-, for the bcc 
and fcc models should, as argued, be smaller than for the sc lattice. Hence, they can be 
more easily overwhelmed by the analytic corrections, which appear already to play a role 
for rather small t. 

13 C. Bagnuls and C. Bervillier tell us that they have also performed field-theoretic-based 
calculations (unpublished) for u > u*, which allow negative correction amplitudes. 
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An interesting question is whether u < u *  for most  experimental 
systems. 14 For  the binary liquid mixture of  carbon disulfide and 
ni tromethane,  for example, Greer  (46) has analyzed coexistence curve data  of 
Gopa l  et  at'. (4v) and has concluded that the correct ion ampli tude is pos i t i ve ;  

hence, it seems that  u < u* for this mixture. This is also consistent with the 
fact that  the effective exponent  values 7elf(T) observed for l iqu id-vapor  
compressibilities usually lie below 1.24 or 1.23. 

In summary,  we conclude that the signs of the correction amplitudes 
in the three-dimensional sc, bcc, and fcc spin- l /2  Ising models are all 
negative. The existing nonasympto t i c  field-theoretic calculations, on the 
other  hand, entail positive correction amplitudes. In applications to non- 
asymptot ic  properties of experimental systems, such as l iquid-vapor,  
binary liquid, or magnetic  systems, the signs of the correction amplitudes 
may  determine whether pure Ising model  or  field-theoretic calculations 
form a more useful basis of direct comparison.  
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14 B. G. Nickel has remarked to us that a similar situation occurs in the study of dilute 
polymer solutions. The interpenetration function, related to the second virial coefficient, has 
been calculated using both lattice self-avoiding random walk models and two-parameter 
models based oh Gaussian chains. Although the two types of models yield leading correc- 
tion terms which are opposite in sign, either sign can arise in an experiment. See especially 
Huber and Stockmayer. (45~ 
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